

Effects of P and Ca depletion-repletion periods on intestinal and renal expression of genes associated with P, Ca and vitamin D metabolism in pigs

Enrique GONZALO*1, Marie-France PALIN¹, Marie-Pierre LÉTOURNEAU-MONTMINY², Agnès NARCY³, Candido POMAR¹ ¹Agriculture and Agri-Food Canada, Sherbrooke, Canada; ²Animal Science Department, Laval University, Quebec, Canada; ³Poultry Research Station, UR83, INRA, Nouzilly, France.

Introduction

- > Optimization of dietary phosphorus (P) and calcium (Ca) can reduce overfeeding and feeding costs and promote sustainable pig production
- Animals receiving P and Ca deficient diets (depletion) followed by non-deficient diets (repletion) improve digestive and metabolic utilization of both minerals (Létourneau-Montminy et al., 2014)
- However the underlying mechanisms are unknown

Material & Methods (animals and feeding strategies)

Table 1: Depletion and repletion sequences

Phases	1	2	3	
Treatments	25-50 kg	50-75 kg	75-110 kg	
CCC	C	C	C	
CLC	C	L	C	
LCC	L	C	C	

- > 60 castrated F1 males (initial BW 24±3.3 kg)
- > 20 animals per treatment
- > 3 growing phases of 28 days
- Depleted animals: L, CL (in phases 1 & 2) Repleted animals: C, LC, LCC and CCC (in phases 1, 2 & 3)

Table 2: Percentages of total Ca and digestible P of the depleted and repleted diets

Phases	1		2)		3
Chemical	25-50 kg		50-75 kg		75-110 kg	
Composition	C	L	С	L	С	L
Total Ca, %	0.91	0.51	0.67	0.39	0.56	0.33
Digestible P, %	0.30	0.18	0.24	0.14	0.19	0.11

- Control diet (C) \rightarrow 100% P & Ca requirements (NRC, 2012) Low diet (L) \rightarrow 60% P & Ca requirements.
- \triangleright Ratio total Ca: Digestible P = 2.9

■CC ■LC

Objective

Evaluate the effects of P and Ca depletion-repletion sequences on the relative mRNA abundance of genes related with P, Ca and vitamin D metabolism in mid-jejunum and kidney of growing pigs

Material & Methods (relative mRNA abundance)

- > 30 pigs at the end of the 2nd phase (treatments CC, CL and LC) and 30 pigs at the end of the 3rd phase (treatments CCC, CLC and LCC) were slaughtered
- > Samples of mid-jejunum and kidney were collected to study the relative mRNA abundance of genes related with P, Ca and vitamin D metabolism (Table 3). Tissue samples were immediately frozen in liquid nitrogen and stored at −80 °C
- > RNA extraction and gene expression measurements by quantitative PCR as previously reported³
- > Statistical analyses: depletion and repletion results were analysed independently within each growing phase. A mixed procedure of SAS with a Tukey adjustment was used

Table 3: Selected genes for the quantification of the mRNA abundance in mid-jejunum and kidney

	Mid- jejunum	Kidney
P	SLC20A1	FGFR 1IIIC
	SLC20A2	SLC20A2
		SLC34A1
		SLC34A3
Ca	ATP2B1	S100G
	S100G	TRPV5
	SLC8A1	CALB1
	TRPV6	
	TRPV5	
Vit D	CYP24A1	CYP24A1
	CYP27B1	CYP27B1
	KL	KL

Results & Discussion

2nd feeding phase: DEPLETION (CC vs. CL)

Mid-jejunum (Figure 1)

- > mRNA abundance of Ca related genes (S100G and TRPV6) were 36% and 42% higher in CL than CC pigs
 - Putative effect of Parathormone (PTH): higher intestinal Ca absorption

Kidney (Figure 2)

- > mRNA abundance of Ca related genes (S100G and CALB1) were 400% and 51% higher in CL than CC pigs
 - Effect of PTH: higher Ca re-absorption in kidney

2nd feeding phase: REPLETION (CC vs. LC)

Mid-jejunum (Figure 3)

No significant difference in mRNA abundance between treatments

Kidney (Figures 4-5)

- > mRNA abundance of P related genes (SLC20A2 and SLC34A3) were 29% and 25% lower in LC than CC pigs.
- > mRNA abundance of Ca related genes (S100G and CALB1) were 8 times and 57% higher in CL than LC pigs.
 - Effect of PTH: higher P excretion and Ca re-absorption 1 in kidney

3rd feeding phase: DEPLETION and REPLETION

There was no significant difference in relative mRNA abundance of studied genes between treatments

Figure 1: Depletion effects on mid-Figure 2: Depletion effects on kidney jejunum genes mRNA abundance genes mRNA abundance SICURAL SICURAL STRIPS SUNG SICORI FRENG FRENG CAPARA CAPARA SICORI SICO

Conclusions

- Depletion P & Ca: Putative effect of PTH
- → Increase mRNA abundance of Ca related genes and Ca intestinal absorption
- Repletion P & Ca: Putative effect of PTH
 - → mRNA abundance of P related genes: CC > LC pigs
 - → mRNA abundance of Ca related genes: CL > LC pigs
 - → Increase P excretion Ca re-absorption in kidney
- > No mRNA abundance differences for studied genes at the end of the study (phase 3)

Acknowledgements

This work was financially supported by Agriculture and Agri-Food Canada, Swine Innovation Porc, and Aliment Breton. Thanks to Steve Method for statistical analyses and Danièle Beaudry for technical help.

References

- 1. Létourneau-Montminy, M.P., P. Lovatto and C. Pomar, 2014. Journal of Animal Sciences, 92:3914–3924
- 2. NRC, 2012. Nutrient requirements of swine. Washington, USA: National Academy Press
- 3. Palin, M-P., B. Labrecque, D. Beaudry, M. Mayhue, V. Bordignon and B. Murphy, 2008. Domestic Animal Endocrinology 35, 58–73

