

Introduction

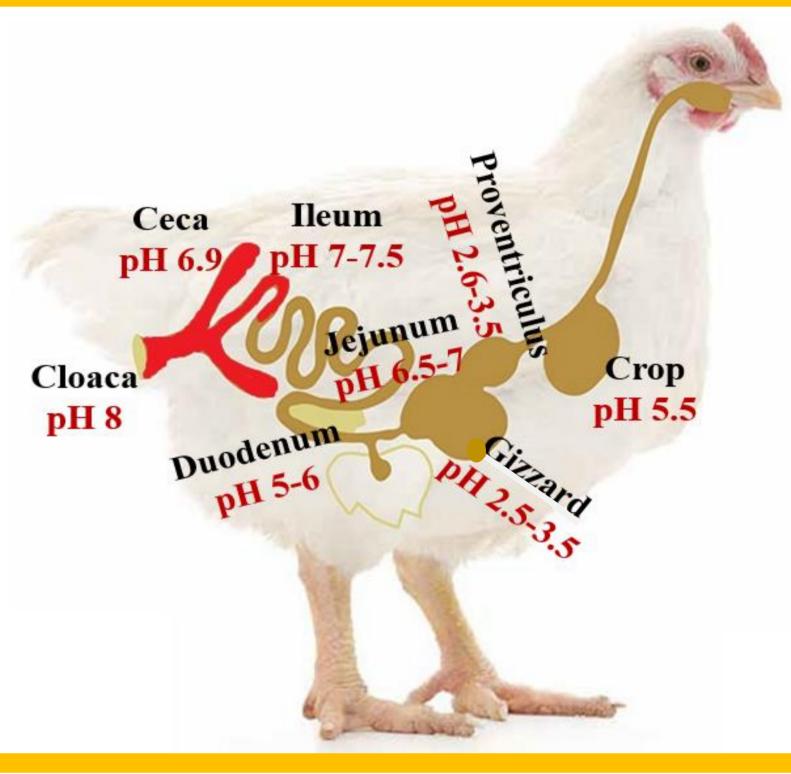
Runoff and soil erosion can carry excess phosphorus (P), especially Water-Soluble Phosphorus (WSP), applied to land causing eutrophication (Moore et al., 1999).
 Phosphates are commonly removed from municipal and industrial wastewater by precipitation with multivalent metals, such as Fe³⁺ and Al³⁺ (Metcalf et al., 2003).
 Background

In a previous trial, it has been shown that the addition of Fe sulfate encapsulated in fat matrix to broiler diet can reduced up to 24% the excretion of WSP in excreta without modifying P retention and growth performance (Floradin and al., 2017).

Objective

The aim of this trial was to evaluate the effect of iron encapsulated or not using a spray-chilling method in terms of growth performance, apparent ileal (AID) digestibility of calcium (Ca), Fe, P and phytic P (PP), kidneys and liver Fe content, and bone mineral content (BMC) of tibia (DXA, Discovery W; Hologic Inc., Waltham, MA, USA) and WSP excretion in litter.

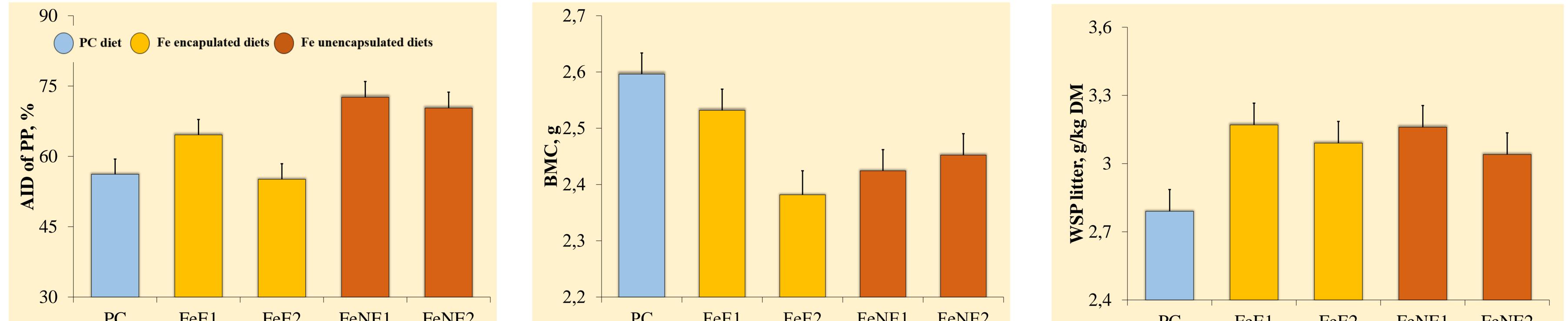
Materials and methods


Three-phases feeding program (0-10, 10-21, 21-34 days) and 5 diets:

- A positive control (PC) (analyzed Fe =300 ppm)
- PC + 2 levels of Fe sulfate (33, and 60 ppm Fe) encapsulated (FeE1 and FeE2)
- PC + 2 levels of Fe sulfate (33 and 60 ppm Fe) non-encapsulated (FeNE1 and FeNE2).

✤ 2700 males Cobb 500, 45 birds per pen, litter was collected at d 35.

Data were analyzed as a randomized complete block design by PROC MIXED of SAS using contrast (PC+ vs. Fe, FeE vs. FeNE, FeE1 vs. FeE2 and FeNE1 vs. FeNE2).


Target zone for optimal release Fe²⁺ and formation insoluble complexes.

Results and discussion

A really important point to consider is dietary Fe in PC was really higher than expected with 300 ppm

Overall ADG was reduced by iron addition (PC vs other, P = 0.05) except in birds receiving FeE1 (FeE1 vs FeE2, P < 0.05).
A significant increase in AID of P (P < 0.001), PP (P = 0.01; Fig 1), Ca (P < 0.001) and Fe (P < 0.001) was observed with the addition of Fe (PC vs other).
High Fe diets increase Fe concentration in the liver (FeE1 vs FeE2, P = 0.003), but kidneys content were not affected (PC vs other, P=0,59).
BMC was reduced with Fe addition (C+ vs other, P = 0.02) except in FeE1 (FeE1 vs FeE2, P = 0.009).
Iron did not significantly affect total P litter, but increase WSP in the litter (P < 0.001).

FC FEEI FEEZ FEINEI FEINEZ	FC FEEL FEEZ FEINEL FEINEZ	PC FEEI FEE2 FENEI FENE2
Dietary treatments	Dietary treatments	Dietary treatments
Fig1.The effect of Fe on PP AID	Fig2. The effect of Fe on BMC	Fig3.The effect of P on WSP litter concentration

Fe complexes P inducing a P deficiency that leads to higher hydrolysis of PP (*Applegate et al., 2003*)

Adverse effect of high Fe concentration on bone mineralization and remodeling (*Tsay et al., 2010; Jia et al., 2012*), perhaps inducing an increase in urinary excretion of P.

Conclusion and perspectives

Fe addition encapsulated or not reduces growth performance and does not insolubilize the P in the litter.
Fe diets are effective to improve the digestibility of total P and Ca by an increase of hydrolysis of phytic P.
The increase of P digestibility with Fe addition needs further investigation.

References

Applegate et al. 2003 Poult. Sci. 82:1024–1029; Floradin P. (2017). PSA; Jia et al. 2012 J. Orthop. Res. 30:1843–1852 Metcalf, E. E., and Eddy, H. P. (2003). Wastewater engineer treatment disposal, reuse. New York; Moore et al., 1999. Poult. Sci. 78: 692-698;Tsay et al. 2010 Blood, 116:2582–2589.